1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
pub mod calculus {
pub struct Vec3 {
pub x: f32,
pub y: f32,
pub z: f32,
// cached: Vec3Cache,
}
pub type Point3 = Vec3;
impl Vec3 {
pub fn new(x: f32, y: f32, z: f32) -> Self {
Self { x, y, z }
}
pub fn add(&self, other: &Self) -> Self {
Self {
x: self.x + other.x,
y: self.y + other.y,
z: self.z + other.z
}
}
pub fn sub(&self, other: &Self) -> Self {
Self {
x: self.x - other.x,
y: self.y - other.y,
z: self.z - other.z
}
}
pub fn scalar_mul(&self, multiplier: f32) -> Self {
Self {
x: self.x * multiplier,
y: self.y * multiplier,
z: self.z * multiplier,
}
}
pub fn mag_sqr(&self) -> f32 {
self.x * self.x + self.y * self.y + self.z * self.z
}
pub fn mag(&self) -> f32 {
self.mag_sqr().sqrt()
}
pub fn dot_prod(&self, other: &Self) -> f32 {
self.x * other.x + self.y * other.y + self.z * other.z
}
pub fn cross_prod(&self, other: &Self) -> Self {
Self {
x: self.y * other.z - self.z - other.y,
y: self.z * other.x - self.x * other.z,
z: self.x * other.y - self.y * other.x,
}
}
pub fn unit(&self) -> Self {
let mag = self.mag();
Self {
x: self.x / mag,
y: self.y / mag,
z: self.z / mag,
}
}
}
pub struct Ray<'a> {
pub origin: &'a Point3,
pub direction: &'a Vec3,
}
impl<'a> Ray<'a> {
pub fn at(&self, t: f32) -> Point3 {
// Get parametric location
self.origin.add(&self.direction.scalar_mul(t))
}
}
}
|